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Pe?y	(2013)	and	Pe?y	and	Li	(2013a,b)	demonstrated	a	
new	Bayesian	retrieval	methodology	for	surface	rainfall	
es)ma)on	from	resolu)on-matched	TRMM	Microwave	
Imager	(TMI)	data,	using	co-colocated	Precipita)on	Radar	
(PR)	rain	rates	as	the	calibra)on	data	source.	Unique	
features	of	this	algorithm	include	the	following:	
•  A	novel	objec)ve	surface	type	classifica)on		based	on	
“similari)es”	between	the	means	and	covariances	of	
mul)channel	microwave	TBs	computed	for	each	1-deg.	
grid	box.	

•  A	novel	dimensional	reduc)on	technique	(Pe?y	2013)	
that	improves	the	discrimina)on	of	precipita)on	against	
noisy	backgrounds.	

•  A	precomputed	Bayesian	lookup	table	that	yields	not	only	
a	mean	surface	rain	rate	but	also	a	complete	PDF	of	
possible	rain	rates	for	any	given	TMI	pixel.	

•  Valida)on	of	the	algorithm	against	one	year	of	
independent	PR	data	demonstrated	roughly	factor-of-two	
improvement	in	RMS	error	rela)ve	to	the	standard	2A12	
rainfall	product	over	virtually	every	surface	type.	

	
The	above	methodology	has	now	been	adapted	to	the	GPM	
Microwave	Imager	(GMI)	and		applied	to	the	first	1.7	years	
of	GMI	data	(March	2014	–	December	2015,	using	GPM	
Dual-frequency	Precipita)on	Radar	(DPR)	Ku-band	rain	
rates	as	the	training	data	source.		
	
An	early	a?empt,	presented	last	year	(and	using	far	less	
training	data),	did	not	quite	achieve	the	performance	
previously	demonstrated	for	TRMM.		We	a?ributed	the	
degraded	error	sta)s)cs	to	the	following	factors:	
•  Resolu)on-matched	TBs	were	not	available	for	GMI,	so	
spa)al	gradients	introduced	considerable	noise	into	the	
retrievals,	in	contrast	to	the	case	for	the	earlier	TMI	
implementa)on.	

•  Varia)ons	in	land	surfaces	are	considerable	greater	for	
the	GPM	owing	to	its	coverage	of	a	much	wider	range	of	
la)tudes	(roughly	68S–68N,	as	compared	to	38S–38N	for	
TRMM).	Ice	and	snow	are	major	factors.	

	
We	therefore	undertook	the	following	tasks:	
1.  Deriva)on	of	coefficients	for	(de)convolving	all	GMI	

channels	to	a	common	EFOV	similar	to	that	of	the	18.7	
GHz	channels	(Pe?y	and	Bennartz	2015,	see	Fig.	1	and	
Table	1).	

2.  Deriva)on	of	a	new	surface	classifica)on	map	using	a	
larger	number	(12)	of	dis)nct	surface	types	(Fig.	2).	

3.  Crea)on	of	a	matchup	database	from	resolu)on	
matched	GMI	TBs	and	DPR	(Ku)	rain	rates.	

4.  Objec)ve	deriva)on	of	dimensional	reduc)on	
coefficients	and	a	new	Bayesian	data	base	(in	lookup	
table	form)	comprising	one-half	of	the	available	1.7	years	
of	matchups.	

5.  Ini)al	valida)on	against	the	independent	half	of	the	data	
from	the	same	period	(Figs.	3	–5).	
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Figure	2:	Map	of	the	12	objec)vely	determined	land	surface	classes.		GMI	data	falling	into	these	classes	were	further	subdivided	
according	to	whether	Tskin	was	above	or	below	275	K,	an	indica)on	as	to	whether	surface	snow	or	ice	needed	to	be	considered.	

Figure	3:	La)tudinal	profiles	of	rainfall	from	GMI	
compared	with	independent	DPR	Ku-band	rainfall	
es)mates	for	three	different	surface	types.	a)	Ice	free	
ocean.		b)	Ice	free	land.	c)	Cold	land	and	ocean	(possible	
ice).	

Figure	4:	Comparison	of	GMI-derived	precipita)on	with	DPR	(Ku-band)	derived	precipita)on,	condi)oned	on	surface	skin	
temperatures	warmer	than	275K		

Table	1:	The	numerical	beamwidths	
corresponding	to	the	results	in	Fig.	1.	

Figure	1:	Along-	and	across-scan	effec)ve	
fields-of-view	(EFOVs)	for	GMI	channels	from	
10.65	to	89	GHz,	before	and	ajer	
(de)convolu)on	according	to	the	method	of	
Pe?y	and	Bennartz	(2016)	
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Figure	5:	Comparison	of	GMI-derived	precipita)on	with	DPR	(Ku-band)	derived	precipita)on,	condi)oned	on	surface	skin	
temperatures	colder	than	275K	and	thus	possibly	affected	by	snow	or	ice.	


